11 research outputs found

    Efficient End-to-End Secure Key Management Protocol for Internet of Things

    Get PDF
    Internet of things (IoT) has described a futurevision of internetwhere users, computing system, and everyday objects possessing sensing and actuating capabilities are part of distributed applications and required to support standard internet communication with more powerful device or internet hosts. This vision necessitates the security mechanisms for end-to-end communication. A key management protocol is critical to ensuring the secure exchange of data between interconnecting entities, but due to the nature of this communication system where a high resource constrained node may be communicating with node with high energy makes the application of existing key management protocols impossible. In this paper, we propose a new lightweight key management protocol that allows the constrained node in 6loWPAN network to transmit captured data to internet host in secure channel. This protocol is based on cooperation of selected 6loWPAN routers to participate in computation of highly consuming cryptographic primitives. Our protocol is assessed with AVISPA tool, the results show that our scheme ensured security properties

    Behaviour of solar wireless sensor network in saharan region under different scenarios consideration

    Get PDF
    This paper deals with the Wireless Sensor Network comportment in the south west region precisely Bechar city. Algeria has the highest technical and economic potentials for solar power exploitation in the Middle East and North Africa region. In this paper, the focus is on the behaviour of Wireless Sensor Network (WSNs) supplied by solar panel PV connected to node via boost converter (DC/DC) controlled by maximum power point tracking (MPPT) technique, using the incremental conductance (IC) algorithm to extract maximum power. In Our present work, many tests were carried out. The WSNs are examined under sever and different temperature and irradiation variation. The obtained result is satisfactory for our (WSNs) simulated in a MATLAB / SIMULINK environment. The performances of the proposed strategy controller give a satisfactory simulation results

    Monitoring of Wireless Sensor Networks

    Get PDF

    Approach to minimizing consumption of energy in wireless sensor networks

    Get PDF
    The Wireless Sensor Networks (WSN) technology has benefited from a central position in the research space of future emerging networks by its diversity of applications fields and also by its optimization techniques of its various constraints, more essentially, the minimization of nodal energy consumption to increase the global network lifetime. To answer this saving energy problem, several solutions have been proposed at the protocol stack level of the WSN. In this paper, after presenting a state of the art of this technology and its conservation energy techniques at the protocol stack level, we were interested in the network layer to propose a routing solution based on a localization aspect that allows the creation of a virtual grid on the coverage area and introduces it to the two most well-known energy efficiency hierarchical routing protocols, LEACH and PEGASIS. This allowed us to minimize the energy consumption and to select the clusters heads in a deterministic way unlike LEACH which is done in a probabilistic way and also to minimize the latency in PEGASIS, by decomposing its chain into several independent chains. The simulation results, under "MATLABR2015b", have shown the efficiency of our approach in terms of overall residual energy and network lifetime

    Linear Optimization Model for Efficient Use of Irrigation Water

    No full text
    The implementation of innovative and efficient irrigation techniques is among the greatest challenges facing agriculture. In this regard, a linear programming model is presented in order to optimize water use. The idea behind this model is to assess the effectiveness or ineffectiveness of precipitation to determine the amount of irrigation water required to optimize water use. To achieve this idea, the “knapsack” problem decisional form was used, and the combination of the linear programming and the above-mentioned form proved satisfactory. Field experiments were conducted in Algeria. Based on calculated budgets a model using linear programming was developed. A comparison between the model results and the field findings suggests that the model could reduce water consumption by 28.5%

    Corrigendum to “Linear Optimization Model for Efficient Use of Irrigation Water”

    No full text
    The implementation of innovative and efficient irrigation techniques is among the greatest challenges facing agriculture. In this regard, a linear programming model is presented in order to optimize water use. The idea behind this model is to assess the effectiveness or ineffectiveness of precipitation to determine the amount of irrigation water required to optimize water use. To achieve this idea, the “knapsack” problem decisional form was used, and the combination of the linear programming and the above-mentioned form proved satisfactory. Field experiments were conducted in Algeria. Based on calculated budgets a model using linear programming was developed. A comparison between the model results and the field findings suggests that the model could reduce water consumption by 28.5%

    An intelligent monitoring of greenhouse using wireless sensor networks

    Full text link
    [EN] Over recent years, the interest for vegetables and fruits in all seasons and places has much increased, from where diverse countries have directed to the commercial production in greenhouse. In this article, we propose an algorithm based on wireless sensor network technologies that monitor the microclimate inside a greenhouse and linear equations model for optimization plant production and material cost. Moreover, we also suggest a novel design of an intelligent greenhouse. We validate our algorithms with simulations on a benchmark based on experimental data made at lNRA of Montfavet in France. Finally, we calculate the statistical estimators RMSE, TSSE, MAPE, EF and R-2. The results obtained are promising, which shows the efficiency of our proposed systemWe would like to give special thanks to our colleagues Pr. Draoui Belkacem and Dr. Bourouis Amina from Tahri Mohamed University -Bechar, Algeria, for their helps and advices. Also, we would like to thank the team of ENERAGARID laboratory from Tahri Mohamed University -Bechar, Algeria. Last but not least, we would like to thank the anonymous reviewers for their valuable suggestions to improve the content and quality of our paper. This work has been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR and by the Conselleria de Educacion, Cultura y Deporte with the Subvenciones para la contratacion de personal investigador en fase postdoctoral, grant number APOSTD/2019/04Touhami, A.; Benahmed, K.; Parra, L.; Bounaama, F.; Lloret, J. (2020). An intelligent monitoring of greenhouse using wireless sensor networks. Smart Structures and Systems. 26(1):117-134. https://doi.org/10.12989/sss.2020.26.1.11711713426
    corecore